Supporting Concepts

J. Morbach, A. Yang, A. Wiesner, W. Marquardt

July 2008

Enquiries should be addressed to:
RWTH Aachen University
Aachener Verfahrenstechnik
Process Systems Engineering
52056 Aachen

Tel.: +49 (0) 241 80 - 94668
Fax: +49 (0) 241 80 - 92326
E-Mail: secretary.pt@avt.rwth-aachen.de
Contents

List of Figures ... 3
1 Introduction ... 4
2 Mathematical Relation .. 5
 Usage ... 6
 Concept Descriptions .. 8
3 Physical Dimension (Partial Model) ... 18
 3.1 Physical dimension (Ontology module)... 18
 Concept Definitions .. 20
 3.2 Derived Dimensions... 23
 Concept Definitions .. 23
4 SI Unit (Partial Model) ... 32
 4.1 SI Unit (Ontology Module).. 32
 Concept Descriptions .. 34
 4.2 Derived SI Units ... 42
5 Space and Time ... 43
 Concept Descriptions .. 46
6 Geometry .. 54
 Usage ... 56
 Concept Descriptions .. 58
References ... 65
References ... 66
Appendix A Documentation Format .. 67
Index of Concepts ... 70
List of Figures

Fig. 1: Overview on partial model supporting_concepts ... 4
Fig. 2: Tree representation of the equation $a + b = 2$.. 5
Fig. 3: Class diagram of the ontology module mathematical relation .. 5
Fig. 4: OntoCAPE representation of $a + b = 2$; operands are represented through attribute values. 6
Fig. 5: Shorthand representation of the equation $a + b = 2$.. 6
Fig. 6: Representation pattern 1 .. 7
Fig. 7: Representation pattern 1 .. 8
Fig. 8: Overview on partial model physical_dimension ... 18
Fig. 9: Class diagram of the ontology module physical_dimension ... 19
Fig. 10: Definition of the derived dimension ‘velocity’ ... 19
Fig. 11: Classification of derived dimensions, according to Chertov (1997) .. 23
Fig. 12: Overview on the partial model SI_unit ... 32
Fig. 13: The base dimensions and the corresponding base units of the SI system 32
Fig. 14: Overview on the ontology module SI_unit ... 33
Fig. 15: Definition of the derived SI unit ‘m_per_s’ ... 34
Fig. 16: Definition of the derived SI unit ‘N’ ... 42
Fig. 17: Spatial coordinates .. 43
Fig. 18: Types of spatial coordinate systems .. 44
Fig. 19: Application example for a polar coordinate system .. 44
Fig. 20: Temporal coordinates .. 45
Fig. 21: Representation of a time period with a definite starting time .. 45
Fig. 22: Application of the concepts time period and temporal coordinate .. 46
Fig. 23: Spatio-temporal coordinate system .. 46
Fig. 24: Key concepts of geometry .. 54
Fig. 25: Specializations of hasProperty as workarounds for missing QNR .. 54
Fig. 26: Disk and Rectangle .. 55
Fig. 27: Cuboid and sphere ... 55
Fig. 28: Types of cylinders ... 56
Fig. 29: Types of cones .. 56
Fig. 30: Representation alternative 1: The geometric properties are summarized in an aspect system 57
Fig. 31: Application example of representation alternative 1 .. 57
Fig. 32: Application example of representation alternative 2 .. 57
Fig. 33: Basic elements of graphical notation .. 69
1 Introduction

The partial model **supporting_concepts** provides fundamental notions, such as spatial and temporal coordinate systems, geometrical concepts, mathematical relations, as well as commonly used physical dimensions and SI-units. The concepts defined in this partial model do not belong to the core of the CAPE domain, but are merely utilized by the other partial models of OntoCAPE for defining and completing domain concepts. For that reason, **supporting_concepts** is only rudimentarily developed, as it is not the objective of OntoCAPE to conceptualize areas that are beyond the scope of the CAPE domain. For example, the partial model **mathematical_relation** does not attempt to establish a full-fledged algebraic theory, as does the EngMath ontology (Gruber and Olsen, 1994); rather, it provides a simple but pragmatic mechanism for the representation of mathematical relations, which serves the current needs of the other partial models of OntoCAPE. In the future, the ontology modules of **supporting_concepts** could be replaced by generic ontologies developed and tested by others in a more systematic manner.

![Diagram of partial model supporting_concepts]

Fig. 1: Overview on partial model **supporting_concepts**

As depicted in Fig. 1, **supporting_concepts** comprises five subordinate partial models, which are **mathematical_relation**, **physical_dimension**, **SI_unit**, **space_and_time**, and **geometry**.

2 Mathematical Relation

The ontology module mathematical relation introduces concepts to represent mathematical expressions. However, it is not the objective of this module to describe mathematical models. Rather, this module provides auxiliary concepts, which are utilized by other ontology modules (e.g., for the definition of units, cf. Sect. 4.1).

Mathematical relations and expressions are represented by means of binary trees\(^1\). The nodes of the tree represent the operands and the operators, and the structure of the tree specifies the order of evaluation. For example, the relation \(a + b = 2\) can be represented through the binary tree depicted in Fig. 2.

\[
\begin{array}{c}
+ \\
\hline
a \quad b \\
\hline
2
\end{array}
\]

Fig. 2: Tree representation of the equation \(a + b = 2\)

The leaves of the tree represent the operands (here: a, b, 2), the internal nodes represents the functional operators (here: +), and the root node denotes either a relational operator (here: =) or another functional operator.

The ontological representation of binary trees is adopted from the design pattern binary tree, as defined in the Meta Model (cf. [meta_model/binary_tree]): A node may have a left child and a right child; special nodes are root node, leaf, and internal node.

Additionally, the class node value is introduced, which assigns a node to a mathematical concept (cf. Fig. 3). A node value is either an operand or an operator. The operand class represents the variables, parameters, or numbers of a mathematical expression. An operator is either a relational operator or a functional operator. A relational operator represents mathematical relations, such as equality or greater than. A functional operator denotes mathematical operations, such as addition, exponentiation, or logarithm. Two types of functional operators are distinguished: A binary operator, which takes two arguments, and a unary operator, taking only a single argument\(^2\).

![Node Value Diagram](image)

Fig. 3: Class diagram of the ontology module mathematical relation

Depending on the type of node, some restrictions are imposed on the type of its node value:

- A root node has only operators as node values.

\(^1\) Currently, it is applied to algebraic expressions only. However, the approach can probably be extended to complex PDE systems.

\(^2\) In this case, the corresponding node has only a single child node, which represents the operand.
An internal node has only functional operators as node values.

A leaf has only operands as node values.

If a unary operator is used, the corresponding node has exactly one child.

If a binary operator is used, the corresponding node has exactly two children.

It is not compulsory that the operands of a mathematical expression are represented as instances of the class operand; instead, they may be represented as values of the attribute nodeValue. An example is presented in Fig. 4, which shows the OntoCAPE representation of the equation $a + b = 2$. The variables a and b are values of type ‘string’, the number 2 is of type ‘float’ (both ‘string’ and ‘float’ are built-in XML schema datatypes; cf. Biron et al. 2004).

Moreover, a shorthand notation may be used to substitute child nodes that apply the nodeValue attribute. These nodes must be leaves that have no other function but to carry the value of the attribute nodeValue. In this case, they may be replaced by the attributes leftChildNodeValue and rightChildNodeValue, which are applied instead of the relations hasLeftChild and hasRightChild. Fig. 5 shows again the representation of the equation $a + b = 2$, this time in shorthand notation. Compared to Fig. 4, the child nodes RHS, FirstSummand, and SecondSummand have been pruned, and their respective node values are represented through the attributes leftChildNodeValue and rightChildNodeValue.

In the module physical_dimension, the concepts of mathematical_relation are utilized to establish mathematical relations between physical dimensions: (e.g., velocity = length / time). Similarly, in the
ontology module SI_unit, mathematical relations can be established between different units (e.g., Newton = kilogram * meter / second^2). In these applications, a single operand is frequently involved in multiple mathematical expressions. Take for instance the linear equation system

\[
a + b = 2 \quad (1) \\
a - b = 0 \quad (2)
\]

Here, the operand \(a\) appears both in equation (1) and in equation (2); the same is true for operand \(b\). There are two possible representation patterns for such a situation:

Representation pattern 1 is shown in Fig. 6. Here, separate nodes (leaves) are created for each occurrence of an operand; for instance, the leaf \text{Var1_Eq1}\ represents the occurrence of the operand \(a\) in equation (1), \text{Var1_Eq2}\ represents the occurrence of \(a\) in equation (2).

Representation pattern 1 is rather straightforward. However, it may lead to a significant overhead, as a new node must be created for each occurrence of an operand. This can be avoided by representation pattern 2, which is exemplarily presented in Fig. 7: Here, only one node (leaf) is created for each operand; this node forms part of multiple trees. For instance, \text{Var1}\ is a leaf of both the tree that represents equation (1) and of the tree that represents equation (2).
Pattern 2 reduces the representation effort, which is a considerable relief when modeling large equation systems or nested definition expressions, such as those in the ontology module \textit{SI_unit}. On the other hand, pattern 2 is not as straightforward as representation pattern 1. The user must choose which one he/she prefers.

Note that representation pattern 1 can be enforced by adding the constraint that each \textit{node} must have only a single parent.

Concept Descriptions

Individual concepts of the module \textit{mathematical relations} are defined below.

Classes

Binary operator

Description

A \textit{binary operator} denotes a binary operation between two expressions. Typical binary operations are addition, subtraction, multiplication, division, and exponentiation.

Relations

- A \textit{binary operator} is a specialization of a functional \textit{operator}.

Usage

The following \textit{binary operators} are predefined: \textit{plus} (addition), \textit{minus} (subtraction), \textit{times} (multiplication), \textit{divide} (division), \textit{power} (exponentiation), and \textit{root} (nth root). Further \textit{binary operators} may be added by the user. Labels and definitions of \textit{binary operators} should be adopted from the Mathematical Markup Language, MathML (Carlisle et al., 2003).
Description
A functional operator denotes a mathematical function.

Definition
A functional operator is either a unary operator or a binary operator.

Relations
- A functional operator is a specialization of operator.

Internal node
Description
An internal node is a node that has at least one parent and at least one child.

Definition
A node that has a parent node as well as a child. The child may be represented either as a node or through the attribute leftChildNodeValue or rightChildNodeValue.

Relations
- Internal node is a specialization of node.
- Internal node is a specialization of the meta class internal node.
- An internal node has at least one parent node.
- An internal node has at least one child node or one leftChildNodeValue or one rightChildNodeValue.
- An internal node has exactly one functional operator as node value.
- If the node value is a unary operator, then the internal node has exactly one child node (or, if shorthand notation is applied, exactly one leftChildNodeValue or rightChildNodeValue).
- If the node value is a binary operator or a relational operator, then the internal node has exactly two child nodes (or alternatively one leftChildNodeValue and one rightChildNodeValue).

Leaf
Description
A leaf is a node without any children.

Definition
A node that has neither a child node, nor a leftChildNodeValue, nor a rightChildNodeValue.

Relations
- Leaf is a specialization of a node.
- A leaf has at least one parent node.
- A leaf has no child node.
- A leaf has no leftChildNodeValue.
- A leaf has no rightChildNodeValue.
- A leaf has only operands as node values.

Node
Description
A node is the basic element of a binary tree. It can be linked to up to two child nodes.
Definition

A node is either a leaf or a root node or an internal node.

Relations

- Node is a specialization of the meta class binary_tree:node.
- A node has zero or one left child, which is either represented as a node or (if shorthand notation is applied) represented through the attribute leftChildNodeValue.
- A node has zero or one right child node, which is either represented as a node or, alternatively, through the attribute rightChildNodeValue.
- A node may have some parent node.
- A node has exactly one node value, which is either represented as a node value or through the attribute nodeValue.

Node value

Description

A node value represents a component part of mathematical expression. It can be either an operator or an operand.

Definition

A node value is either an operand or an operator.

Relations

- Node value is a specialization of the meta class non-exhaustive value set.

Operand

Description

An operand is one of the inputs of a functional operator.

Relations

- An operand is a specialization of node value.

Operator

Description

An operator is either a relational operator or a functional operator.

Definition

An operator is either a relational operator or a functional operator.

Relations

- An operator is a specialization of node value.

Relational operator

Description

A relational operator denotes a mathematical relation, such as equality or greater than, between two expressions.

Relations
A relational operator is a specialization of an operator.

Usage
The following relational operators are predefined: \texttt{eq} (equal), \texttt{geq} (greater or equal), \texttt{gt} (greater than), \texttt{leq} (less or equal), \texttt{lt} (less than), and \texttt{neq} (not equal). Further binary operators may be added by the user. Labels and definitions of relational operators should be adopted from the Mathematical Markup Language, MathML (Carlisle et al., 2003).

Root node

Description
A root node is the root element of a binary tree. All other nodes are descendents of the root node.

Definition
A node without any parent node.

Relations
- A root node is a specialization of a node.
- A root node has at least one child node.
- A root node has exactly one operator as a node value.
- If the node value is a unary operator, then the root node has exactly one child node (or, in shorthand notation, exactly one \texttt{leftChildNodeValue} or \texttt{rightChildNodeValue}).
- If the node value is a binary operator or a relational operator, then the root node has exactly two child nodes (or alternatively one \texttt{leftChildNodeValue} and one \texttt{rightChildNodeValue}).

Unary operator

Description
A unary operator denotes a mathematical operation which takes a single argument. Typical binary operations are squaring, root extraction, or factorial.

Relations
- A unary operator is a specialization of a functional operator.

Usage
The following unary operators are predefined: \texttt{cos} (cosinus function), \texttt{exp} (exponentiation function), \texttt{factorial} (factorials), \texttt{ln} (natural logarithm), \texttt{sin} (sinus function). Further binary operators may be added by the user. Labels and definitions of unary operators should be adopted from the Mathematical Markup Language, MathML (Carlisle et al., 2003).

Relations

hasAncestor

Description
The ancestors of a node are the nodes that precede the current node in the tree (i.e., the node’s parent, grandparent, etc.).

Characteristics
- Specialization of the meta relation hasAncestor.
- Domain: node
- Range: node
- Inverse: hasDescendent
- Transitive

hasChild

Description
The relation `hasChild` points to the children of a *node*; it subsumes the relations `hasLeftChild` and `hasRightChild`.

Characteristics
- Specialization of the meta relation `hasChild`.
- Specialization of `hasDescendent`.
- Domain: node
- Range: node
- Inverse: hasParent

hasDescendent

Description
The descendents of a *node* are the *nodes* that succeed the current *node* in the tree (i.e., the *node*’s children, grandchildren, etc.).

Characteristics
- Specialization of the meta relation `hasDescendent`.
- Domain: node
- Range: node
- Inverse: hasAncestor
- Transitive

hasLeftChild

Description
The relation `hasLeftChild` links a parent *node* to its left child *node*.

Characteristics
- Specialization of the meta relation `hasLeftChild`.
- Specialization of `hasChild`
- Domain: node
- Range: node

hasNodeValue

Description
The relation `hasNodeValue` links a *node value* to a *node*.

Characteristics
- Specialization of the meta relation `object-featureRelation`.
- Domain: node.
- Range: node value.

hasParent

Description
The relation hasParent denotes the parent of a node.

Characteristics
- Specialization of the meta relation hasParent.
- Specialization of hasAncestor
- Domain: node
- Range: node
- Inverse: hasChild

hasRightChild

Description
The relation hasRightChild links a parent node to its right child node.

Characteristics
- Specialization of the meta relation hasRightChild.
- Specialization of hasChild
- Domain: node
- Range: node

isLeftChildOf

Description
The relation isLeftChildOf points from the left child node to its parent node.

Characteristics
- Specialization of the meta relation isLeftChildOf.
- Specialization of hasParent
- Domain: node
- Range: node

isRightChildOf

Description
The relation isRightChildOf points from the right child node to its parent node.

Characteristics
- Specialization of the meta relation isRightChildOf.
- Specialization of hasParent
- Domain: node
- Range: node

Attributes
leftChildNodeValue

Description
The attribute `leftChildNodeValue` can be used as a shorthand to substitute a left child `node`, the node value of which is represented through the attribute `nodeValue`.

Characteristics
- Domain: `node`
- Datatype: any (built-in XML Schema Datatype)

rightChildNodeValue

The attribute `rightChildNodeValue` can be used as a shorthand to substitute a left child `node`, the node value of which is represented through the attribute `nodeValue`.

Characteristics
- Domain: `node`
- Datatype: any (built-in XML Schema Datatype)

nodeValue

Description
The attribute `nodeValue` indicates an operand (usually a number) in a mathematical expression.

Characteristics
- Domain: `node`
- Datatype: any (built-in XML Schema Datatype)

Individuals
The labels and definitions of the following individuals have been adopted from the Mathematical Markup Language, MathML (Carlisle et al., 2003).

cos

Description
The individual `cos` is the unary operator that represents the cosine function.

Characteristics
- Instance of `unary operator`.

divide

Description
The individual `divide` represents the binary division operator; it indicates the mathematical operation A "divided by" B.

Characteristics
- Instance of `binary operator`.

eq

Description
The individual `eq` represents the relational operator "equals".
Characteristics
- Instance of relational operator.

exp
Description
The individual exp is the unary operator that represents the exponentiation function.
Characteristics
- Instance of unary operator.

factorial
Description
The individual factorial is the unary operator used to construct factorials. Factorials are defined by n! = n*(n-1)* ... *1.
Characteristics
- Instance of unary operator.

gte
Description
The individual gte represents the relational operator "greater than or equal to".
Characteristics
- Instance of relational operator.

gt
Description
The individual gt represents the relational operator "greater than".
Characteristics
- Instance of relational operator.

leq
Description
The individual leq represents the relational operator "lesser than or equal to".
Characteristics
- Instance of relational operator.

ln
Description
The individual ln is the unary operator that represents the ln function (natural logarithm).
Characteristics
- Instance of unary operator.

lt
Description
The individual *lt* represents the relational operator "lesser than".

Characteristics
- Instance of *relational operator*.

minus

Description
The individual *minus* represents the binary subtraction operator. It constructs the mathematical operation A "minus" B.

Characteristics
- Instance of *binary operator*.

neq

Description
The individual *neq* represents the relational operator "not equal to".

Characteristics
- Instance of *relational operator*.

plus

Description
The individual *plus* represents the binary addition operator.

Characteristics
- Instance of *binary operator*.

power

Description
The individual *power* represents the binary powering operator that is used to construct expressions such as A "to the power of" B. In particular, it is the operation for which A "to the power of" 2 is equivalent to A*A.

Characteristics
- Instance of *binary operator*.

root

Description
The individual *root* represents the binary operator that is used to construct the n\(^{th}\) root of an expression. The first argument "a" is the expression and the second object "n" denotes the root, as in \((a)^{1/n}\).

Characteristics
- Instance of *binary operator*.

sin
Description
The individual sin is the unary operator that represents the sine function.

Characteristics
- Instance of unary operator.

\textbf{times}

Description
The individual times represents the binary multiplication operator.

Characteristics
- Instance of binary operator.
3 Physical Dimension (Partial Model)

The partial model physical_dimension comprises two ontology modules. The main module, physical_dimension, defines a set of base dimensions and establishes the proceedings to derive further physical dimensions from these base dimensions. It is extended by the ontology module derived_dimensions, which introduces a number of frequently used derived dimensions.

3.1 Physical dimension (Ontology module)

The concept of a physical_dimension has been introduced in the system module. Basically, it serves as a characteristic that can be associated with physical properties, physical quantities, and units for the purpose of classification or differentiation.

The relations between physical dimensions can be described through mathematical equations, such as

\[\text{Joule} = \text{Newton} \times \text{meter}. \]

Multiplication and exponentiation to a real power are the permissible operations on physical dimensions. Exploiting this property, the majority of physical_dimensions can be mathematically derived from a small set of dimensions that we call fundamental or base dimensions by means of multiplication and exponentiation operations; physical_dimensions that can be defined in terms of the base dimensions are called composite or derived dimensions. For example, the derived dimension ‘velocity’ can be defined as the product of the base dimension ‘length’ and the base dimension ‘time’ raised to the power of minus one.

There is no intrinsic property of a dimension that makes it fundamental (Gruber and Olsen, 1994); hence, the choice of the base dimensions is a matter of convention. While the definition of the physical_dimension concept in the system module still allows for arbitrary conventions (or ‘systems of dimensions’, as they will be called hereafter), the physical_dimension module establishes the SI system of dimensions, which comprises the base dimensions of length, time, thermodynamic temperature, mass, amount of substance, electric current, and luminous intensity (BIPM, 2006).

Fig. 9 presents the major concepts of the physical_dimension module. The class physical_dimension, introduced in the ontology module system, is exhaustively partitioned into three subclasses:

- The class base_dimension is defined as the exhaustive enumeration of the individuals length, time, thermodynamic_temperature, mass, amount_of_substance, electric_current_strength, and luminous_intensity.

- The class supplementary_dimensions subsumes further fundamental dimensions that do not form part of the SI system of units and are therefore not classified as base dimensions. Currently, the class holds two individuals: amount_of_money characterizes monetary physical_quantities and units. For the characterization of dimensionless physical_quantities, the concept of an
identity_dimenSion is introduced. Prominent examples of dimensionless physical quantities are dimensionless numbers like the Reynolds number, or counting quantities like the partition function in statistical thermodynamics or the number of trays in a distillation column. According to Gruber and Olsen (1994), the identity_dimenSion represents the identity element for multiplication over physical dimensions. That means that the product of the identity_dimenSion and any other physical dimension is that other physical dimension.

- All other physical dimensions are derived dimensions. These can be subdivided by further subclasses that, for example, group physical dimensions by fields of science. A possible classification is provided by the ontology module derived_dimensions: (cf. Sect. 3.2).

![Fig. 9: Class diagram of the ontology module physical_dimension](image)

The mathematical definition of a derived dimension\(^3\) can be specified using the concepts defined in ontology module mathematical_relation: A derived dimension is defined by a node, which represents the root of a definition tree; the leaves of the definition tree have either base dimensions or fundamental dimensions as node values. To this end, base dimension and supplementary dimension are declared as subclasses of operand; that way, their instances may appear as operands in the definition equation. An example is given in Fig. 10: velocity is declared as an instance of derived dimension; it is defined by Velocity node, which is in turn defined by its two child nodes, Length and Time, which are concatenated by the binary operator divide. Length and Time have the base dimensions length and time, respectively, as node values.

![Fig. 10: Definition of the derived dimension ‘velocity’](image)

\(^3\) Implementation advice: Unfortunately, the definition of derived dimensions through the above mechanism scales badly with current reasoners. Therefore, such definitions should be omitted in order to enhance the reasoning performance, unless they are definitely required by the respective application.
Concept Definitions
Individual concepts of the module physical_dimension are defined below.

Classes

Base dimension

Description
Most physical dimensions can be mathematically derived from a small set of dimensions that we call base dimensions. Such a set of base dimensions is chosen by convention. In OntoCAPE, we adopt the base dimensions of the SI system of units (BIPM, 2006), which are length, time, thermodynamic temperature, mass, amount of substance, electric current, and luminous intensity.

Definition
A base dimension is one of the following individuals: amount_of_substance, electric_current, length, luminous_intensity, mass, thermodynamic_temperature, or time.

Relations
- Base dimension is a specialization of a physical dimension.
- Base dimension is a subclass of operand.

Derived dimension

Description
A derived dimension is a physical dimension that can be defined as a product of powers of the base dimensions. For example, the derived dimension velocity can be defined as the ratio of the base dimensions length and time.

Relations
- Derived dimension is a specialization of a physical dimension.
- A derived dimension can only be defined by a node.
- A derived dimension can be defined by at most one node.

Physical dimension (continued)

Relations
A physical dimension is either a base dimension or a supplementary dimension or a derived dimension.

Supplementary dimension

Description
This class subsumes fundamental dimensions that do not form part of the SI system of units and are therefore not classified under the base dimension class.

Relations
- Supplementary dimension is a specialization of a physical dimension.
- Supplementary dimension is a subclass of operand.

Relations
isDefinedBy

Description
The relation defines links a note to a derived dimension, which represents the right hand side of a definition equation for the derived dimension.

Characteristics
- Domain: derived dimension
- Range: node

Individuals

amount_of_money

Description
An amount of money in an arbitrary currency

Characteristics
- Instance of fundamental dimension
- Different from identity_dimension

amount_of_substance

Description
The number of elementary entities contained in a body, or a in system of bodies (Chertov, 1997).

Characteristics
- Instance of supplementary dimension
- Different from electric_current, length, luminous_intensity, mass, thermodynamic_temperature, time

electric_current

Description
The time derivative from an electric charge sustained by a charge carrier through an observed surface (Chertov, 1997).

Characteristics
- Instance of base dimension
- Different from amount_of_substance, length, luminous_intensity, mass, thermodynamic_temperature, time

identity_dimension

Description
According to Gruber & Olsen (1994) the identity_dimension is defined as the identity element for multiplication over physical dimensions. That means that the product of the identity_dimension and any other physical dimension is that other physical dimension.

Characteristics
- Instance of supplementary dimension
- Different from amount_of_money

length

Description
The physical dimension which characterizes the space and distance traveled by bodies or their parts along a given line (Chertov, 1997).

Characteristics
- Instance of *base dimension*
- Different from *amount_of_substance, electric_current, luminous_intensity, mass, thermodynamic_temperature, time*

luminous_intensity

Description
The radiant flux emitted by a source of radiation in a given direction inside a small solid angle in relation to this solid angle (Chertov, 1997).

Characteristics
- Instance of *base dimension*
- Different from *amount_of_substance, electric_current, length, mass, thermodynamic_temperature, time*

mass

Description
The physical dimension which characterizes the inert and gravitational properties of material objects (Chertov, 1997).

Characteristics
- Instance of *base dimension*
- Different from *amount_of_substance, electric_current, length, luminous_intensity, thermodynamic_temperature, time*

thermodynamic_temperature

Description
The temperature calculated according to a thermodynamic temperature scale from absolute zero (Chertov, 1997).

Characteristics
- Instance of *base dimension*
- Different from *amount_of_substance, electric_current, length, luminous_intensity, mass, time*

time

Description
The physical dimension characterizing the successive change in phenomena and the states of matter which determines the duration of phenomenal being (Chertov, 1997).

Characteristics
- Instance of *base dimension*
- Different from *amount_of_substance, electric_current, length, luminous_intensity, mass, thermodynamic_temperature*
3.2 Derived Dimensions

The ontology module derived_dimensions provides a number of frequently used derived dimensions. These predefined derived dimensions are classified into categories which have been suggested by Chertov (1997):

- The class space and time subsumes those physical dimensions that can be derived from the base dimensions length and time.
- Periodic phenomena assembles derived dimensions with a periodic character, such as frequency or period.
- Mechanics subsumes derived dimensions that are relevant for the field of mechanics.
- Similarly, the instances of the class thermodynamics are of relevance in the area of thermodynamics and transport phenomena.
- Finally, electricity and magnetism is intended to subsume derived dimensions that are connected with the phenomena of electricity or magnetism.

![Fig. 11: Classification of derived dimensions, according to Chertov (1997)](image)

Concept Definitions

Individual concepts of the module derived_dimensions are defined below.

Classes

Electricity and magnetism

Description

The class electricity and magnetism subsumes derived dimensions that are connected with the phenomena of electricity or magnetism.

Relations

- Electricity and magnetism is a subclass of derived dimension.

Thermodynamics

Description

The class thermodynamics subsumes derived dimensions that are of relevance in the area of heat transfer and thermodynamics.
Relations
- *Heat* is a subclass of *derived dimension*.

Mechanics
Description
The class *mechanics* subsumes *derived dimensions* that are of relevance for the field of mechanics.
Relations
- *Mechanics* is a subclass of *derived dimension*.

Periodic phenomena
Description
The class *periodic phenomena* subsumes *derived dimensions* with a periodic character, such as *frequency* or *period*.
Relations
- *Periodic phenomena* is a subclass of *derived dimension*.

Space and time
Description
The class *space and time* subsumes the *physical dimensions* that can be derived from the *base dimensions* *length* and *time*.
Relations
- *Space and time* is a subclass of *derived dimension*.

Individuals

Acceleration
Description
Acceleration is the first time derivative from velocity (Chertov, 1997).
Characteristics
- Instance of *space and time*.
- Different from *angular_acceleration*, *angular_velocity*, *area*, *plane_angle*, *solid_angle*, *velocity*, *volume*.

Angular Acceleration
Description
Angular Acceleration is the first time derivative from the angular velocity (Chertov, 1997).
Characteristics
- Instance of *space and time*.
- Different from *acceleration*, *angular_velocity*, *area*, *plane_angle*, *solid_angle*, *velocity*, *volume*.

Angular Velocity
Description
Angular Velocity is the first time derivative from the deflection angle (Chertov, 1997).
Characteristics
- Instance of space and time.
- Different from acceleration, angular_acceleration, area, plane_angle, solid_angle, velocity, volume.

Area
Description
Characterizes the plane and curved surfaces of a physical body (Chertov, 1997).
Characteristics
- Instance of space and time.
- Different from acceleration, angular_acceleration, angular_velocity, plane_angle, solid_angle, velocity, volume.

Damping Coefficient
Description
The inverse to the time interval during which the amplitude decreases e (Euler number, i.e., 2.718…) times (Chertov, 1997).
Characteristics
- Instance of periodic phenomena.
- Different from frequency, oscillation_phase, period, rotational_frequency.

Density
Description
Density is the ratio of the mass to the volume of a body’s element (Chertov, 1997).
Characteristics
- Instance of Mechanics.
- Different from dynamic_viscosity, force, kinematic_viscosity, moment_of_force, moment_of_inertia, momentum, power, pressure, specific_volume, surface_tension, work.

Dynamic Viscosity
Description
Dynamic viscosity is the coefficient of proportionality in the internal friction force formula (Chertov, 1997).
Characteristics
- Instance of Mechanics.
- Different from density, force, kinematic_viscosity, moment_of_force, moment_of_inertia, momentum, power, pressure, specific_volume, surface_tension, work.

Electric charge
Description
Electronic charge is the measure equal to the product of electric current into time during which the current flows (Chertov, 1997).
Characteristics
- Instance of Electricity and Magnetism
Entropy
Description
In thermodynamics, entropy is a measure of the unavailability of a system’s energy to do work (Daintith, 2005).
Characteristics
- Instance of Heat.
- Different from heat_capacity, heat_flow_rate, internal_energy, quantity_of_heat, specific_entropy, specific_heat_capacity, temperature_coefficient, thermal_conductivity.

Frequency
Description
Frequency is the inverse of the period (Chertov, 1997).
Characteristics
- Instance of periodic phenomena.
- Different from damping_coefficient, oscillation_phase, period, rotational_frequency.

Force
Description
The degree of mechanical influence exerted on a body by other bodies (Chertov, 1997).
Characteristics
- Instance of Mechanics.
- Different from density, dynamic_viscosity, kinematic_viscosity, moment_of_force, moment_of_inertia, momentum, power, pressure, specific_volume, surface_tension, work.

Heat Capacity
Description
The ratio of heat required to warm a physical body to the difference in temperature (Chertov, 1997).
Characteristics
- Instance of Heat.
- Different from entropy, heat_flow_rate, internal_energy, quantity_of_heat, specific_entropy, specific_heat_capacity, temperature_coefficient, thermal_conductivity.

Heat Flow Rate
Description
Heat Flow Rate is the ratio of the quantity of heat which passes a surface to time (Chertov, 1997).
Characteristics
- Instance of Heat.
- Different from entropy, heat_capacity, internal_energy, quantity_of_heat, specific_entropy, specific_heat_capacity, temperature_coefficient, thermal_conductivity.

Internal Energy
Description
Internal Energy is the energy from the random thermal movement of all micro particles in a system (Chertov, 1997).

Characteristics
- Instance of *Heat*.
- Different from *entropy, heat_capacity, heat_flow_rate, quantity_of_heat, specific_entropy, specific_heat_capacity, temperature_coefficient, thermal_conductivity*.

Kinematic Viscosity

Description
Kinematic viscosity is the ratio of the dynamic viscosity of a medium to its density (Chertov, 1997).

Characteristics
- Instance of *Mechanics*.
- Different from *density, dynamic_viscosity, force, moment_of_force, moment_of_inertia, momentum, power, pressure, specific-volume, surface_tension, work*.

Moment of Force

Description
In relation to a certain point, the product of the force and the arm, i.e. the distance between the direction of the force and the point (Chertov, 1997).

Characteristics
- Instance of *Mechanics*.
- Different from *density, dynamic_viscosity, force, kinematic_viscosity, moment_of_inertia, momentum, power, pressure, specific-volume, surface_tension, work*.

Moment of Inertia

Description
Moment of inertia is the mass of a material point per square distance to the axis of rotation (Chertov, 1997).

Characteristics
- Instance of *Mechanics*.
- Different from *density, dynamic_viscosity, force, kinematic_viscosity, moment_of_force, momentum, power, pressure, specific-volume, surface_tension, work*.

Momentum

Description
Momentum is the mass of a physical body at its velocity (Chertov, 1997).

Characteristics
- Instance of *Mechanics*.
- Different from *density, dynamic_viscosity, force, kinematic_viscosity, moment_of_force, moment_of_inertia, power, pressure, specific-volume, surface_tension, work*.

Oscillation Phase

Description
Oscillation phase is an independent variable of a function describing the quantity which changes according to the law of harmonic vibrations (Chertov, 1997).

Characteristics
- Instance of *periodic phenomena*.
- Different from *damping_coefficient, frequency, period, rotational_frequency*.

Period

Description
The time interval during which a cycle of periodic process is completed (Chertov, 1997).

Characteristics
- Instance of *periodic phenomena*.
- Different from *damping_coefficient, frequency, oscillation_phase, rotational_frequency*.

Plane Angle

Description
Geometric figure formed by two rays (sides of the angle) extending from one point (Chertov, 1997).

Characteristics
- Instance of *space and time*.
- Different from *acceleration, angular_acceleration, angular_velocity, area, solid_angle, velocity, volume*.

Power

Description
Power is the ratio of work to time interval during which the work is completed (Chertov, 1997).

Characteristics
- Instance of *Mechanics*.
- Different from *density, dynamic_viscosity, force, kinematic_viscosity, moment_of_force, moment_of_inertia, momentum, pressure, specific-volume, surface_tension, work*.

Pressure

Description
Pressure is the ratio between the perpendicular force acting on a surface element to the area of the element (Chertov, 1997).

Characteristics
- Instance of *Mechanics*.
- Different from *density, dynamic_viscosity, force, kinematic_viscosity, moment_of_force, moment_of_inertia, momentum, power, specific-volume, surface_tension, work*.

Quantity of Heat

Description
Quantity of heat is the part of internal energy which is transferred spontaneously, with no external influence from more to less heated physical body (Chertov, 1997).
Characteristics
- Instance of Heat.
- Different from entropy, heat_capacity, heat_flow_rate, internal_energy, specific_entropy, specific_heat_capacity, temperature_coefficient, thermal_conductivity.

Rotational Frequency
Description
The number of rotations completed per unit time.
Characteristics
- Instance of periodic phenomena.
- Different from damping_coefficient, frequency, oscillation_phase, period.

Specific Entropy
Description
Specific Entropy is the ratio of entropy to the mass of a system (Chertov, 1997).
Characteristics
- Instance of Heat.
- Different from entropy, heat_capacity, heat_flow_rate, internal_energy, quantity_of_heat, specific_heat_capacity, temperature_coefficient, thermal_conductivity.

Specific Heat Capacity
Description
Specific heat capacity is the ratio of the heat capacity of a uniform physical body to its mass (Chertov, 1997).
Characteristics
- Instance of Heat.
- Different from entropy, heat_capacity, heat_flow_rate, internal_energy, quantity_of_heat, specific_entropy, temperature_coefficient, thermal_conductivity.

Specific Volume
Description
Specific volume is the ratio of the volume to the mass of a body’s element (Chertov, 1997).
Characteristics
- Instance of Mechanics.
- Different from density, dynamic_viscosity, force, kinematic_viscosity, moment_of_force, moment_of_inertia, momentum, power, pressure, surface_tension, work.

Solid Angle
Description
The part of space enclosed within one cavity of conical surface with a closed directrix (Chertov, 1997).
Characteristics
- Instance of `space and time`.
- Different from `acceleration, angular_acceleration, angular_velocity, area, plane_angle, velocity, volume`.

Surface Tension

Description

Surface tension is the ratio of the force, acting on a segment of the free surface contour perpendicular to the contour and tangentially to the surface, and the length of the segment (Chertov, 1997).

Characteristics
- Instance of `Mechanics`.
- Different from `density, dynamic_viscosity, force, kinematic_viscosity, moment_of_force, moment_of_inertia, momentum, power, pressure, specific-volume, work`.

Temperature Coefficient

Description

The ratio of the relative change in a physical quantity to the temperature change reckoned from the initial temperature (Chertov, 1997).

Characteristics
- Instance of `Heat`.
- Different from `entropy, heat_capacity, heat_flow_rate, internal_energy, quantity_of_heat, specific_entropy, specific_heat_capacity, thermal_conductivity`.

Thermal Conductivity

Description

Thermal conductivity is the density of heat flux produced by heat conductivity at temperature gradient (Chertov, 1997).

Characteristics
- Instance of `Heat`.
- Different from `entropy, heat_capacity, heat_flow_rate, internal_energy, quantity_of_heat, specific_entropy, specific_heat_capacity, thermal_conductivity`.

Velocity

Description

Velocity is the first time derivative from movement (Chertov, 1997).

Characteristics
- Instance of `space and time`.
- Different from `acceleration, angular_acceleration, angular_velocity, area, plane_angle, solid_angle, volume`.

Volume

Description

The amount of space occupied by a three-dimensional object or region of space. (Chertov, 1997).

Characteristics
- Instance of `space and time`.
Different from acceleration, angular_acceleration, angular_velocity, area, plane_angle, solid_angle, velocity.

Work

Description

Work is the scalar product of force into an elementary displacement (Chertov, 1997).

Characteristics

- Instance of *Mechanics*.
- Different from density, dynamic_viscosity, force, kinematic_viscosity, moment_of_force, moment_of_inertia, momentum, power, pressure, specific-volume, surface_tension.
4 SI Unit (Partial Model)

The partial model SI_unit comprises the ontology modules SI_unit and derived_SI_units (cf. Fig. 12). The former module introduces the set of base units of the SI system, and it establishes a mechanism to derive further units from these. The latter module defines a number of frequently used derived SI units by applying this mechanism.

Fig. 12: Overview on the partial model SI_unit

4.1 SI Unit (Ontology Module)

The ontology module SI_unit establishes the International System of Units, which is also known as the SI system of units (cf. BIPM, 2006). According to Gruber and Olsen (1994), a *system of units* is “a class of units defined by composition from a base set of units, such that every instance of the class is "standard" unit for a physical dimension and every physical dimension has an associated unit.”

Some units are designated as *fundamental units* or *base units*, meaning that all other units can be derived from them. There is no intrinsic property that makes a unit fundamental; rather, a system of units defines a set of orthogonal base dimensions and assigns a base unit to each of them. Fig. 13 shows a listing of the base dimensions and the corresponding base units of the SI system.

Fig. 13: The base dimensions and the corresponding base units of the SI system

<table>
<thead>
<tr>
<th>base dimension</th>
<th>base unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>meter</td>
</tr>
<tr>
<td>mass</td>
<td>kilogram</td>
</tr>
<tr>
<td>time</td>
<td>second</td>
</tr>
<tr>
<td>electric current</td>
<td>ampere</td>
</tr>
<tr>
<td>thermodynamic temperature</td>
<td>kelvin</td>
</tr>
<tr>
<td>amount of substance</td>
<td>mole</td>
</tr>
<tr>
<td>Luminous intensity</td>
<td>candela</td>
</tr>
</tbody>
</table>

Fig. 14 shows how the SI system of units is implemented in OntoCAPE. The *unit of measure* class has already been established in the ontology module *system*. Now, an SI unit is introduced as a special type
of unit of measure that complies with the SI system; formally, an SI unit is defined as the exhaustive enumeration of its subclasses SI base unit and SI derived unit.

- The class SI base unit subsumes the seven base units of the SI system, namely A (ampere), cd (candela), K (kelvin), kg (kilogram), m (meter), mol (mole), and s (second).

- A derived SI unit is an SI unit that can be derived from one or several of the SI base units by means of multiplication and exponentiation operations.

Additionally, the classes SI prefix and SI prefixed unit are introduced: An SI prefix represents a decimal power by which an SI unit is multiplied; that way, one obtains a prefixed derived unit, which is a multiple or submultiple of the original unit of measure. So far, the following 20 prefixes have been approved by the General Conference on Weights and Measures: yotta, zetta, exa, peta, tera, giga, mega, kilo, hecto, deca, deci, centi, milli, micro, nano, pico, femto, atto, zepto, yocto (cf. BIPM, 2006).

![Fig. 14: Overview on the ontology module SI_unit](image)

The definition equation for a particular derived SI unit can be indicated through the same mechanism that has already been used for the definition of derived dimensions (cf. Sect. 3.2): A derived SI unit is defined by a node (cf. ontology module mathematical_relation, Sect. 2), which represents the root of a definition tree; the leaves of the definition tree have SI base units or SI prefixes as node values. To this end, SI base unit and SI prefix are declared to be subclasses of operand; that way, their instances may appear as operands in the definition equation. An example is given in Fig. 15: The derived SI unit m_per_s is defined by the node Meter_Per_Second. In turn, Meter_Per_Second is further specified through its two child nodes, Meter and Second, which are concatenated by the binary operator divide. Meter and Second have the SI base units m and s, respectively, as node values. A more complex example, the definition tree for a Newton (N), is shown in Fig. 16. Note that these derivation as shown in Fehler! Verweisquelle konnte nicht gefunden werden. and Fig.1 are defined in derived_units.
As explained before, the suggested mechanism for the indication of definition equations scales badly with current reasoners. Therefore, one should abstain from such definitions, unless they are definitely required by the respective application.

Fig. 15: Definition of the *derived SI unit* "m_per_s"

Fig.1: Definition of the *derived SI unit* ‘N’

Concept Descriptions

Individual concepts of the module *SI unit* are defined below.

Classes

Prefixed derived unit
Description

A prefixed derived unit is an SI unit with an SI prefix. Examples are kJ (kilo-joule), hPa (hecto-pascal), or mm (milli-meter).

Definition

A prefixed derived unit defines a node, the left child node of which has an SI prefix as a node value.

Relations

- A prefixed derived unit is a specialization of an SI derived unit.

SI base unit

Description

The seven base units of the SI system are: ampere, candela, kelvin, kilogram, meter, mole, and second (BIPM, 2006).

Definition

An SI base unit is one of the following individuals: A, cd, K, kg, m, mol, s.

Relations

- SI prefix is a subclass of SI unit.
- SI prefix is a subclass of leaf value.

SI derived unit

Description

“Derived units are units which may be expressed in terms of base units by means of the mathematical symbols of multiplication and division. Certain derived units have been given special names and symbols, and these special names and symbols may themselves be used in combination with those for base and other derived units to express the units of other quantities” (BIPM, 2006).

Relations

- SI derived unit is a subclass of an SI unit.
- An SI derived unit can only be defined by a node.
- An SI derived unit cannot be defined by more than a single node.

SI prefix

Description

An SI prefix can be used to prefix any SI unit to produce a multiple or submultiple of the original unit (BIPM, 2006). So far (as of 2006), the following 20 prefixes have been approved by the General Conference on Weights and Measures: yotta, zetta, exa, peta, giga, mega, kilo, hecto, deca, deci, centi, milli, micro, nano, pico, femto, atto, zepto, yocto.

Definition

An SI prefix is one of the following individuals: yotta, zetta, exa, peta, giga, mega, kilo, hecto, deca, deci, centi, milli, micro, nano, pico, femto, atto, zepto, yocto.

Relations

- An SI prefix is a subclass of leaf value.

SI unit

Description

An SI unit is unit of measure that complies with the SI system of units (cf. BIPM, 2006).
Definition

An SI unit is either an SI base unit or an SI derived unit.

Relations

- SI unit is a subclass of unit.

Relations

isDefinedBy

Description

The relation defines links a note to an SI derived unit, which represents the right hand side of a definition equation for the SI derived unit.

Characteristics

- Specialization of the meta relation feature-objectRelation.
- Domain: SI derived unit
- Range: node

Individuals

A

Description

The official definition of the ampere (symbol: A), given in Sec. 2.1.1.4 of (BIPM, 2006), is as follows:

“The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 metre apart in vacuum, would produce between these conductors a force equal to 2 x 10–7 newton per metre of length.”

Characteristics

- A is an instance of SI base unit.
- A hasDimension current_strength.
- Different from cd, K, kg, m, mol, s.

atto

Description

atto (symbol: a) is an SI prefix that stands for the factor 1e–18.

Characteristics

- atto is an instance of SI prefix.
- Different from yotta, zetta, exa, peta, tera, giga, mega, kilo, hecto, deca, deci, centi, milli, micro, nano, pico, femto, zepto, yocto.

cd

Description

The official definition of the candela (symbol: cd), given in Sec. 2.1.1.7 of (BIPM, 2006), is as follows:

“The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540 x 1012 hertz and that has a radiant intensity in that direction of 1/683 watt per steradian.”
Characteristics
- cd is an instance of SI base unit.
- cd hasDimension luminous intensity.
- Different from A, K, kg, m, mol, s.

centi
Description
centi (symbol: c) is an SI prefix that stands for the factor 1e-2.
Characteristics
- centi is an instance of SI prefix.
- Different from yotta, zetta, exa, peta, tera, giga, mega, kilo, hecto, deca, deci, milli, micro, nano, pico, femto, atto, zepto, yocto.
deca
Description
deca (symbol: da) is an SI prefix that stands for the factor 10e1.
Characteristics
- deca is an instance of SI prefix.
- Different from yotta, zetta, exa, peta, tera, giga, mega, kilo, hecto, deci, centi, milli, micro, nano, pico, femto, atto, zepto, yocto.
deci
Description
deci (symbol: d) is an SI prefix that stands for the factor 1e-1.
Characteristics
- deci is an instance of SI prefix.
- Different from yotta, zetta, exa, peta, tera, giga, mega, kilo, hecto, deca, centi, milli, micro, nano, pico, femto, atto, zepto, yocto.
exa
Description
exa (symbol: E) is an SI prefix that stands for the factor 1e18.
Characteristics
- exa is an instance of SI prefix.
- Different from yotta, zetta, peta, tera, giga, mega, kilo, hecto, deca, deci, centi, milli, micro, nano, pico, femto, atto, zepto, yocto.
femto
Description
femto (symbol: f) is an SI prefix that stands for the factor 1e-15.
Characteristics
- femto is an instance of SI prefix.
Different from yotta, zetta, exa, peta, tera, giga, mega, kilo, hecto, deca, deci, centi, milli, micro, nano, pico, atto, zepto, yocto.

giga
Description
giga (symbol: g) is an SI prefix that stands for the factor 1e9.
Characteristics
- giga is an instance of SI prefix.
- Different from yotta, zetta, exa, peta, tera, mega, kilo, hecto, deca, deci, centi, milli, micro, nano, pico, femto, atto, zepto, yocto.

hecto
Description
hecto (symbol: h) is an SI prefix that stands for the factor 1e2.
Characteristics
- hecto is an instance of SI prefix.
- Different from yotta, zetta, exa, peta, tera, giga, mega, kilo, hecto, deca, deci, centi, milli, micro, nano, pico, femto, atto, zepto, yocto.

K
Description
The official definition of the Kelvin (symbol: K), given in Sec. 2.1.1.5 of (BIPM, 2006), is as follows:
“The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water.”
Characteristics
- K is an instance of SI base unit.
- K hasDimension thermodynamic_temperature.
- Different from A, cd, kg, m, mol, s.

kg
Description
The official definition of the kilogram (symbol: kg), given in Sec. 2.1.1.2 of (BIPM, 2006), is as follows:
“The kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram.”
Characteristics
- kg is an instance of SI base unit.
- kg hasDimension mass.
- Different from A, cd, K, m, mol, s.

kilo
Description
kilo (symbol: k) is an SI prefix that stands for the factor 1e3.
Characteristics
- **kilo** is an instance of *SI prefix*.
- Different from *yotta*, *zetta*, *exa*, *peta*, *tera*, *giga*, *mega*, *hecto*, *deca*, *deci*, *centi*, *milli*, *micro*, *nano*, *pico*, *femto*, *atto*, *zepto*, *yocto*.

m

Description
The official definition of the meter (symbol: m), given in Sec. 2.1.1.1 of (BIPM, 2006), is as follows:
“The metre is the length of the path travelled by light in vacuum during a time interval of 1/299,792,458 of a second.”

Characteristics
- **m** is an instance of *SI base unit*.
- **m** hasDimension *length*.
- Different from *A*, *cd*, *K*, *kg*, *mol*, *s*.

mega

Description
mega (symbol: M) is an SI prefix that stands for the factor 1e6.

Characteristics
- **mega** is an instance of *SI prefix*.
- Different from *yotta*, *zetta*, *exa*, *peta*, *tera*, *giga*, *kilo*, *hecto*, *deca*, *deci*, *centi*, *milli*, *micro*, *nano*, *pico*, *femto*, *atto*, *zepto*, *yocto*.

micro

Description
micro (symbol: µ) is an SI prefix that stands for the factor 1e-6.

Characteristics
- **micro** is an instance of *SI prefix*.
- Different from *yotta*, *zetta*, *exa*, *peta*, *tera*, *giga*, *mega*, *kilo*, *hecto*, *deca*, *deci*, *centi*, *milli*, *nano*, *pico*, *femto*, *atto*, *zepto*, *yocto*.

milli

Description
milli (symbol: m) is an SI prefix that stands for the factor 1e-3.

Characteristics
- **milli** is an instance of *SI prefix*.
- Different from *yotta*, *zetta*, *exa*, *peta*, *tera*, *giga*, *mega*, *kilo*, *hecto*, *deca*, *deci*, *centi*, *milli*, *nano*, *pico*, *femto*, *atto*, *zepto*, *yocto*.

mol

Description
The official definition of the mole (symbol: mol), given in Sec. 2.1.1.6 of (BIPM, 2006), is as follows:
1. The mole is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon 12 [...].

2. When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles.”

Characteristics
- mol is an instance of SI base unit.
- mol hasDimension amount_of_substance.

nano
Description
nano (symbol: n) is an SI prefix that stands for the factor 1e-9.
Characteristics
- nano is an instance of SI prefix.
- Different from yotta, zetta, exa, peta, giga, mega, kilo, hecto, deca, deci, centi, milli, micro, pico, femto, atto, zepto, yocto.

peta
Description
peta (symbol: P) is an SI prefix that stands for the factor 1e15.
Characteristics
- peta is an instance of SI prefix.
- Different from yotta, zetta, exa, peta, giga, mega, kilo, hecto, deca, deci, centi, milli, micro, nano, pico, femto, atto, zepto, yocto.

pico
Description
pico (symbol: p) is an SI prefix that stands for the factor 1e–12.
Characteristics
- pico is an instance of SI prefix.
- Different from yotta, zetta, exa, peta, giga, mega, kilo, hecto, deca, deci, centi, milli, micro, nano, femto, atto, zepto, yocto.

s
Description
The official definition of the second (symbol: s), given in Sec. 2.1.1.3 of (BIPM, 2006), is as follows:
“The second is the duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom.”
Characteristics
- s is an instance of SI base unit.
- s hasDimension time.
- Different from A, cd, K, kg, m, mol.

tera
Description
tera (symbol: T) is an SI prefix that stands for the factor 1e12.

Characteristics
- **tera** is an instance of SI prefix.
- Different from yotta, zetta, exa, peta, giga, mega, kilo, hecto, deca, deci, centi, milli, micro, nano, pico, femto, atto, zepto, yocto.

yocto
Description
yocto (symbol: y) is an SI prefix that stands for the factor 1e–24.

Characteristics
- **yocto** is an instance of SI prefix.
- Different from yotta, zetta, exa, peta, tera, giga, mega, kilo, hecto, deca, deci, centi, milli, micro, nano, pico, femto, atto, zepto.

yotta
Description
yotta (symbol: Y) is an SI prefix that stands for the factor 1e24.

Characteristics
- **yotta** is an instance of SI prefix.
- Different from zetta, exa, peta, tera, giga, mega, kilo, hecto, deca, deci, centi, milli, micro, nano, pico, femto, atto, zepto, yocto.

zepto
Description
zepto (symbol: z) is an SI prefix that stands for the factor 1e-21.

Characteristics
- **zepto** is an instance of SI prefix.
- Different from yotta, zetta, exa, peta, tera, giga, mega, kilo, hecto, deca, deci, centi, milli, micro, nano, pico, femto, atto, yocto.

zetta
Description
zetta (symbol: Z) is an SI prefix that stands for the factor 1e21.

Characteristics
- **zetta** is an instance of SI prefix.
- Different from yotta, exa, peta, tera, giga, mega, kilo, hecto, deca, deci, centi, milli, micro, nano, pico, femto, atto, yocto.

METER
Description
Auxiliary individual for the definition of derived SI units that are derivable from the base unit of m.

Characteristics
- Instance of leaf
- hasNodeValue: m
- Different from AMPERE, CANDELA, KELVIN, KILOGRAM, MOLE, SECOND, YOTTA-, ZETTA-, EXA-, PETA-, TERA-, GIGA-, MEGA-, KILO-, HECTO-, DECA-, DECI-, CENTI-, MILLI-, MICRO-, NANO-, PICO-, FEMTO-, ATTO-, ZEPTO-, YOTTO-

ZETTA-

Description

Auxiliary individual for the definition of prefixed derived units, the definition of which includes the SI prefix of zetta.

Characteristics
- Instance of leaf
- hasNodeValue: zetta
- Different from AMPERE, CANDELA, KELVIN, KILOGRAM, METER, MOLE, SECOND, YOTTA-, ZETTA-, EXA-, PETA-, TERA-, GIGA-, MEGA-, KILO-, HECTO-, DECA-, DECI-, CENTI-, MILLI-, MICRO-, NANO-, PICO-, FEMTO-, ATTO-, ZEPTO-, YOTTO-

4.2 Derived SI Units

The ontology module derived_SI_units establishes a number of frequently used derived SI units and provides the corresponding definition trees. For details, we refer to the formal specification of OntoCAPE.

![Fig. 16: Definition of the derived SI unit ‘N’](image)
5 Space and Time

The ontology module *space_and_time* introduces spatial and temporal coordinate systems and provides concepts for the representation of spatial and temporal points as well as periods of time.

The concept of a *spatial coordinate system* is introduced as a special type of *coordinate system* (cf. Fig. 17). A *spatial coordinate system* has *spatial coordinate system axes*, which may be either *Cartesian* or *curvilinear coordinate system axes*. The ontology module provides some predefined axes, like the x-, y-, and z-axis of a Cartesian coordinate system. Moreover, a *spatial coordinate system* has up to three *spatial coordinates* (depending on whether the system is intended for 1D, 2D, or 3D space); these are either *straight coordinates* (representing a distance) or *angular coordinates* (representing an angle). A *spatial point* is represented through up to three *spatial coordinates*, again depending on the dimensionality of the considered space.

![Fig. 17: Spatial coordinates](image)

Some special types of *spatial coordinate systems* are introduced in Fig. 18; each type is assigned its respective *coordinate system axes*. The *spatial coordinate systems* are classified from two perspectives: The first perspective differentiates coordinate systems for 2D and 3D space, while the second perspective distinguishes curvilinear and Cartesian coordinate systems.
An application example for a polar coordinate system is given in Fig. 19.

The spatial coordinate systems are explicitly classified along the first dimension, i.e., they are categorized as either 2D or 3D spatial coordinate systems as shown in Fig. 19.

4 Implementation advise: According to the principle of ontology normalization (cf. Meta Model), the affiliation to the second dimension should be indirectly defined via necessary and sufficient conditions. This principle is followed in the case of curvilinear coordinate systems (i.e., the class curvilinear coordinate system is defined through necessary and sufficient conditions, such that the subclasses of curvilinear coordinate system can be automatically inferred by a reasoner). However, it is not appropriate to define the class Cartesian coordinate system through necessary and sufficient conditions, since such a definition would severely deteriorate the reasoner performance. Thus, deviating from the principle of ontology normalisation, multiple classification is applied here.
As shown in Fig. 20, the class *temporal coordinate system* is defined analogously to *spatial coordinate system*: A *temporal coordinate system* has one *temporal coordinate*, which refers to a *temporal coordinate system axis*. The *t-axis* is defined as the default axis of a *temporal coordinate system*.

![Fig. 20: Temporal coordinates](image)

An important *temporal coordinate system* is the **UTC-System**. UTC stands for Coordinated Universal Time and denotes an international time standard, which is disseminated by the International Bureau of Weights and Measures (BIPM, 2007). The *temporal coordinate* of the **UTC-System** is named **CoordinatedUniversalTime**. Its *coordinate value* has the *unit* UTC, and the *numericalValue* attribute of the *coordinate value* should be specified in the format of the XML datatype *dateTime* (Biron and Malhotra, 2004).

![Fig. 21: Representation of a time period with a definite starting time](image)

A *time period* is a *scalar quantity* whose *scalar value* denotes the temporal duration of a period of time. Optionally, the starting time of the *time period* can be indicated; to this end, the *scalar value* of the *time period* refers to the *value* of a *temporal coordinate* via the relation *hasStartingTime* (cf. Fig. 21). An application example is shown in Fig. 22.
Finally, the concept of a spatio-temporal coordinate system is introduced, which denotes a coordinate system that has both spatial and temporal coordinates (Fig. 23).

Concept Descriptions

Individual concepts of the module space_and_time are defined below.

Classes

2D Cartesian coordinate system

Description

A 2D Cartesian coordinate system is an orthogonal planar coordinate system that has two straight, perpendicular axes: the x-axis (a.k.a. abscissa) and the y-axis (a.k.a ordinate). A 2D Cartesian coordinate system has a positive orientation (i.e., the x-axis points right and the y-axis points up).

Relations

- 2D Cartesian coordinate system is a subclass of planar coordinate system.
- 2D Cartesian coordinate system is a subclass of Cartesian coordinate system.
- A 2D Cartesian coordinate system has some Cartesian coordinate system axes.
- A 2D Cartesian coordinate system can only have Cartesian coordinate system axes.
- A 2D Cartesian coordinate system has an x-axis.
- A 2D Cartesian coordinate system has a y-axis.

3D Cartesian coordinate system

Description

A 3D Cartesian coordinate system is an orthogonal 3D spatial coordinate system that has three straight, perpendicular axes: the x-axis, the y-axis, and the z-axis. A 3D Cartesian coordinate system has a positive
(right-handed) orientation; that is, the xy-plane is horizontal, the z-axis points up, and the x-axis and the y-axis form a positively oriented 2D Cartesian coordinate system in the xy-plane if observed from above the xy-plane.

Relations
- 3D Cartesian coordinate system is a subclass of 3D spatial coordinate system.
- 3D Cartesian coordinate system is a subclass of Cartesian coordinate system.
- A 3D Cartesian coordinate system has some Cartesian coordinate system axes.
- A 3D Cartesian coordinate system can only have Cartesian coordinate system axes.
- A 3D Cartesian coordinate system has an x-axis.
- A 3D Cartesian coordinate system has a y-axis.
- A 3D Cartesian coordinate system has a z-axis.

3D spatial coordinate system

Description
A 3D spatial coordinate system is a spatial coordinate system for describing positions in 3D space.

Relations
- 3D spatial coordinate system is a subclass of spatial coordinate system.
- A 3D spatial coordinate system has three spatial coordinate system axes.
- A 3D spatial coordinate system has three spatial coordinates.

Angular coordinate

Description
An angular coordinate is an angle that acts as a spatial coordinate.

Definition
An angular coordinate is a spatial coordinate that has the physical dimension of plane_angle.

Relations
- Angular coordinate is a subclass of spatial coordinate.
- An angular coordinate has the dimension plane_angle.
- An angular coordinate can only refer to an curvilinear coordinate system axis.

Cartesian coordinate system

Description
A Cartesian coordinate system is a spatial coordinate system, the coordinate surfaces of which are planes (in 3D) or straight lines (in 2D).

Definition
A Cartesian coordinate system is a spatial coordinate system that has (1) some Cartesian coordinate system axes and (2) only Cartesian coordinate system axes.

Relations
- Cartesian coordinate system is a subclass of spatial coordinate system.
- A Cartesian coordinate system has some Cartesian coordinate system axes.
- A Cartesian coordinate system can only have Cartesian coordinate system axes.
- A Cartesian coordinate system has some straight coordinates.
- A Cartesian coordinate system has only straight coordinates.

Cartesian coordinate system axis

Description

A Cartesian coordinate system axis is an axis of a Cartesian coordinate system.

Relations

- Cartesian coordinate system axis is a subclass of spatial coordinate system axis.

Curvilinear coordinate system

Description

A curvilinear coordinate system is a spatial coordinate system the coordinate surfaces of which are curved surfaces (in 3D) or curved lines (in 2D).

Definition

A curvilinear coordinate system is a spatial coordinate system that has some curvilinear coordinate system axes.

Relations

- Curvilinear coordinate system is a subclass of spatial coordinate system.
- A curvilinear coordinate system has some curvilinear coordinate system axes.
- A curvilinear coordinate system has some angular coordinate.
- A curvilinear coordinate system has some straight coordinate.

Curvilinear coordinate system axis

Description

A curvilinear coordinate system axis is an axis of a curvilinear coordinate system.

Relations

- Curvilinear coordinate system axis is a subclass of spatial coordinate system axis.

Cylindrical coordinate system

Description

A cylindrical coordinate system is an orthogonal 3D spatial coordinate system that has cylindrical coordinates (i.e., radius, height, and azimuth angle). It is especially suited to describe positions on rotationally symmetrical shapes like cylinders or cones.

Relations

- Cylindrical coordinate system is a subclass of 3D spatial coordinate system.
- A cylindrical coordinate system has some curvilinear coordinate system axis.
- A cylindrical coordinate system has a Cartesian coordinate system axis.
- A cylindrical coordinate system has an r-axis.
- A cylindrical coordinate system has a theta-axis.
- A cylindrical coordinate system has a z-axis.

Planar coordinate system

Description
A planar coordinate system is a spatial coordinate system for describing positions located on a two-dimensional plane.

Relations
- Planar coordinate system is a subclass of spatial coordinate system.
- A planar coordinate system has two spatial coordinate system axes.
- A planar coordinate system has two spatial coordinates.

Polar coordinate system
Description
A polar coordinate system is a planar coordinate system that has polar coordinates (i.e., radius and polar angle). It is especially suited for describing positions on a circle or ellipse.

Relations
- Polar coordinate system is a subclass of coordinate system.
- A polar coordinate system has some curvilinear coordinate system axes.
- A polar coordinate system can only have curvilinear coordinate system axes.
- A polar coordinate system has an r-axis.
- A polar coordinate system has a theta-axis.

Spatial coordinate
Description
A spatial coordinate is a coordinate that denotes a spatial position.

Definition
A spatial coordinate is either a straight coordinate or an angular coordinate.

Relations
- Spatial coordinate is a subclass of coordinate.
- A spatial coordinate refers to one spatial coordinate system axis.

Spatial coordinate system
Description
A spatial coordinate system is a coordinate system for describing spatial positions.

Relations
- Spatial coordinate system is a subclass of coordinate system.
- A spatial coordinate system has some spatial coordinates.
- A spatial coordinate system has only spatial coordinates.
- A spatial coordinate system has up to three spatial coordinates.
- A spatial coordinate system has some spatial coordinate system axes.
- A spatial coordinate system has only spatial coordinate system axes.
- A spatial coordinate system has up to three spatial coordinate system axes.

Spatial coordinate system axis
Description
A spatial coordinate system axis is the coordinate system axis of some spatial coordinate system.

Relations
- Spatial coordinate system axis is a subclass of coordinate system axis.

Spatio-temporal coordinate system

Description
A spatio-temporal coordinate system denotes positions in space and time.

Relations
- Spatio-temporal coordinate system is a subclass of coordinate system.
- A spatio-temporal coordinate system has some spatial coordinates.
- A spatio-temporal coordinate system has some temporal coordinates.
- A spatio-temporal coordinate system has only spatial and temporal coordinates.
- A spatio-temporal coordinate system has up to four coordinates.
- A spatio-temporal coordinate system has some spatial coordinate system axes.
- A spatio-temporal coordinate system has some temporal coordinate system axis.
- A spatio-temporal coordinate system has only spatial and temporal coordinate system axes.
- A spatio-temporal coordinate system has up to four coordinate system axes.

Spatial point

Description
A spatial point is a point in space; it is represented through a coordinate set comprising up to 3 spatial coordinates.

Relations
- Spatial point is a subclass of coordinate set.
- A spatial point comprises some spatial coordinates.
- A spatial point comprises only spatial coordinates.
- A spatial point comprises up to 3 spatial coordinates.

Spherical coordinate system

Description
A spherical coordinate system is an orthogonal 3D spatial coordinate system that has spherical coordinates (i.e., radius, azimuth angle, and zenith angle). It is especially suited for describing positions on a sphere or spheroid.

Relations
- Spherical coordinate system is a subclass of 3D spatial coordinate system.
- A spherical coordinate system has an r-axis.
- A spherical coordinate system has a theta-axis.
- A spherical coordinate system has a phi-axis.

Straight coordinate

Description
A straight coordinate is a distance that acts as a spatial coordinate.
Definition
A straight coordinate is a spatial coordinate that has the physical dimension of length.

Relations
- Straight coordinate is a subclass of spatial coordinate.
- A straight coordinate has the dimension length.

Temporal coordinate
Description
A temporal coordinate is a coordinate that denotes a temporal position.

Relations
- Temporal coordinate is a subclass of coordinate.
- A temporal coordinate refers to one temporal coordinate system axis.
- A temporal coordinate has the dimension time.

Temporal coordinate system
Description
A temporal coordinate system is a coordinate system for describing temporal positions.

Relations
- Temporal coordinate system is a subclass of coordinate system.
- A temporal coordinate system has some temporal coordinates.
- A temporal coordinate system has only temporal coordinates.
- A temporal coordinate system has exactly one temporal coordinates.
- A temporal coordinate system has some temporal coordinate system axes.
- A temporal coordinate system has only temporal coordinate system axes.
- A temporal coordinate system has exactly one temporal coordinate system axes.

Temporal coordinate system axis
Description
A temporal coordinate system axis is the coordinate system axis of some temporal coordinate system.

Relations
- Temporal coordinate system axis is a subclass of coordinate system axis.

Time period
Description
A time period is a scalar quantity that denotes the temporal duration of a period of time. Optionally, the starting time of the time period can be indicated.

Relations
- Time period is a subclass of scalar quantity.
- A time period has the physical dimension of time.
- The scalar value of a time period may refer to the coordinate value of a temporal coordinate via the hasStartingTime relation to indicate the starting time of the time period.
Relations

hasStartingTime

Description
Indicates the starting time of a *time period*.

Characteristics
- Specialization of *isObservedAgainstBackdrop*
- Domain: *scalar value*
- Range: *coordinate value of some temporal coordinate*
- Functional

Individuals

CoordinatedUniversalTime

Description
A *CoordinatedUniversalTime* is a *temporal coordinate* of an *UTC-System*; it measures the date-time according to the international time standard UTC.

Relations
- *CoordinatedUniversalTime* is an instance of *temporal coordinate*.
- *CoordinatedUniversalTime* is a property of the *UTC-System*.
- *CoordinatedUniversalTime* refers to the *t-axis*.

phi-axis

Description
The individual denotes the *phi-axis* of a spherical coordinate system. *Phi* is the *zenith angle* between the *z-axis* and the *r-axis*. Its value range lies between 0 and \(\pi \).

Characteristics
- Instance of *curvilinear coordinate system axis*
- Different from *theta-axis*

r-axis

Description
The *r-axis* corresponds to the *radial coordinate*, which denotes the distance (i.e., radius) between a point and the origin of a *spatial coordinate system*.

Characteristics
- Instance of *curvilinear coordinate system axis*
- Different from *x-axis*, *y-axis*, and *z-axis*.

t-axis

Description
The default axis of a *temporal coordinate system*.

Characteristics
- Instance of *temporal coordinate system axis*
theta-axis

Description
The individual denotes the *theta*-axis of a polar coordinate system, spherical coordinate system, or cylindrical coordinate system. *Theta* is the azimuth or polar angle located in the *xy*-plane of a positive *Cartesian coordinate system*; it is defined as the angle between the polar axis (which is equivalent to the *x-axis* of a *Cartesian coordinate system*) and the projection of the *r-axis* onto the *xy*-plane. The value range of *theta* lies between 0 and π.

Characteristics
- Instance of *curvilinear coordinate system axis*
- Different from *phi-axis*

UTC-System

Description
The *UTC-System* is a *temporal coordinate system* that measures the date-time according to the international time standard UTC (Coordinated Universal Time), disseminated by the International Bureau of Weights and Measures (BIPM, 2007).

Relations
- *UTC-System* is an instance of *temporal coordinate system*.
- *UTC-System* has *CoordinatedUniversalTime* as a *temporal coordinate*.
- *UTC-System* has a *t-axis*.

x-axis

Description
The individual denotes the *x-axis* of a positive *Cartesian coordinate system*.

Characteristics
- Instance of *Cartesian coordinate system axis*
- Different from *y-axis*, *z-axis*, and *r-axis*

y-axis

Description
The individual denotes the *y-axis* of a positive *Cartesian coordinate system*.

Characteristics
- Instance of *Cartesian coordinate system axis*
- Different from *x-axis*, *z-axis*, and *r-axis*

z-axis

Description
The individual denotes the *z-axis* of a positive *Cartesian coordinate system* or *cylindrical coordinate system*.

Characteristics
- Instance of *Cartesian coordinate system axis*
- Different from *x-axis*, *y-axis*, and *r-axis*
6 Geometry

The module geometry provides the concepts for describing the shapes and main dimensions of simple geometric figures. Two major classes of figures are introduced, which are both defined as subclasses of system: solids and surfaces.

- A solid (a.k.a. geometric solid or solid geometric figure) is a bounded three-dimensional geometric figure in Euclidean space.
- A surface is a bounded geometric figure in a two-dimensional submanifold of three-dimensional Euclidean space.

Solids and surfaces may have certain geometric properties. Some of them are scalar quantities, such as, diameter, radius, or volume (the latter is only defined for solids, cf. Fig. 24); others, such as edge length, height, and surface area, may alternatively be a scalar quantity or a vector quantity.

- As a scalar quantity, these quantities simply indicate a size – surface area, for instance, indicates either the area of a surface or of (one of) the exterior surface(s) of a solid.
- As a vector quantity, the quantities additionally indicate the orientation of the respective line or surface – in case of the surface area, the vector would have the same orientation as the surface normal, while the Euclidean norm of the vector would equal the area of the surface.

There are two further specializations of the surface area concept:

- Side area, which is only defined for solids, corresponds to one particular exterior surface of a solid. This concept should be applied only if the solid has several distinguishable exterior surfaces (as, e.g., in the case of a cuboid).
- The total surface area indicates the total area of either a surface or of (all) the exterior surface(s) of a solid. A total surface area is always a scalar.

![Fig. 24: Key concepts of geometry](image)

The relations has_area, has_length, and has_volume are introduced as specializations of hasProperty (Fig. 25). However, these relations are merely auxiliary constructs used as replacements for qualified number restrictions. They will drop out again, as soon as qualified number restrictions are made available in OWL.

![Fig. 25: Specializations of hasProperty as workarounds for missing QNR](image)
In the following, some special types of *solids* and *surfaces* and their geometric properties will be introduced. Note that most of the terminology as well as the textual definitions for these concepts have been adopted from the interactive mathematics dictionaries *Mathwords* (Simmons, 2007) and *MathWorld* (Weisstein, 2007).

Disk and *rectangle* are two special kinds of *surfaces*, which have the following properties: a *disk* has exactly one length of type *diameter* or *radius*, whereas a rectangle has exactly two lengths of type *edge length* (Fig. 26).

![Diagram of Disk and Rectangle]

Fig. 26: Disk and Rectangle

Cuboid and *sphere* are special types of *solids*, for which the following properties are defined (cf. Fig. 27):

- A *sphere* has exactly one length of type *radius* or *diameter* as well as one area of type *total surface area*.
- A *cuboid* has exactly three lengths of type *edge length* as well as three areas of type *side area*.

![Diagram of Cuboid and Sphere]

Fig. 27: Cuboid and Sphere

A *cylinder* is a *solid* with parallel congruent bases. The bases can be shaped like any closed plane figure (not necessarily a circle) and must be oriented identically. In order to differentiate the bases from the other exterior surfaces of the *cylinder*, two specializations of *side area* are introduced, namely *base area* and *lateral surface area* (Fig. 28). Then it can be stated that a *cylinder* has exactly two *base areas* and at least one *lateral surface area*. Moreover, a *right circular cylinder*, which is a *cylinder* with circular bases that are aligned one directly above the other, has exactly one *lateral surface area*.
The last type of solid introduced here is the cone, which is a figure with a single base tapering to an apex. If the apex is aligned directly above the center of the base, the cone can be classified as a right cone. Furthermore, if the base of a right cone takes the form of a circle, it can be classified as a right circular cone, which has exactly one lateral surface area (Fig. 29).

Usage

There are two alternative ways to specify the geometry of a system. The first alternative is to summarize all the geometric aspects of the system in a separate aspect system. To this end, the geometry module provides the relations hasShapeRepresentation and hasSurfaceGeometry, which are specializations of the relation hasAspectSystem. These relations may be used to link a solid or a surface to a system (Fig. 30); a reasoner will then infer that the respective solid or surface is an aspect system of the main system.
Fig. 30: Representation alternative 1: The geometric properties are summarized in an *aspect system*

An example is shown in Fig. 31: The shape of the distillation column **Column C1** is represented by the individual **Shape of C1**. As indicated by the brackets in Fig. 31, **Column C1** is an instance of **system**, while **Shape of C1** is an instance of **right circular cylinder**. The two individuals are linked via the relation **hasShapeRepresentation**; thus, it can be inferred that **Shape of C1** is an *aspect system* of the main system **Column C1**.

Shape of C1 is further characterized through its properties and their values. Exemplarily shown is its *height H_C1*, which has a value of 10 m.

Fig. 31: Application example of representation alternative 1

Depending on the application, the above representation alternative may be too complicated for practical use. In the following, a more simple alternative is presented. This alternative can be applied if the shape of the respective **system** is obvious from the context or a matter of common knowledge – for instance, one may safely assume that a distillation column, unless otherwise indicated, has the shape of a **right circular cylinder**. In such a case, the description of the **system**’s geometry is simply a matter of specifying its main dimensions, which can be done by assigning the geometric properties directly to the **system**. This is exemplarily shown in Fig. 32, where the *height H_C1* is directly assigned to the **system Column C1**.

Fig. 32: Application example of representation alternative 2
As a further simplification, the geometric properties may be replaced by specializations of the hasCharacteristic relation (cf. [upper-level]). This approach is taken in module [chemical_process_system/plant].

With respect to information sharing, the users certainly favorable to agree on one convention (i.e. alternative 1 or alternative 2) to avoid misconceptions.

Concept Descriptions

Individual concepts of the module geometry are defined below.

Classes

Base area

Description

The base is the bottom of a solid. If the top is parallel to the bottom (as in a trapezoid or prism), both the top and bottom are called bases. The base area is the surface area of (one of) the base(s).

Relations

- Base area is a subclass of side area.

Cone

Description

A three-dimensional figure with a single base tapering to an apex. The base can be any simple closed curve (Simmons, 2007).

Relations

- Cone is a subclass of solid.
- A cone has some length of type height.
- A cone has some base area.
- A cone has some lateral surface area.
- A cone can only have areas of type base area or lateral surface area.

Cuboid

Description

A closed box composed of three pairs of rectangular faces placed opposite each other and joined at right angles to each other, also known as a rectangular parallelepiped (Weisstein, 2007).

Relations

- Cuboid is a subclass of solid.
- A cuboid has exactly three lengths of type edge length.
- A cuboid has exactly three areas of type side area.

Cylinder

Description

A solid with parallel congruent bases. The bases can be shaped like any closed plane figure (not necessarily a circle) and must be oriented identically (Simmons, 2007).

Relations

- Cylinder is a subclass of solid.
- A cylinder has some length of type height.
- A cylinder has at least three side areas.
- A cylinder has some base area.
- A cylinder has some lateral surface area.
- A cylinder can only have areas of type base area or lateral surface area.

Diameter

Description
The length of a line segment between two points on a circle or sphere which passes through the center of the circle or sphere.

Relations
- Diameter is a subclass of scalar quantity.
- A diameter has the dimension of length.

Disk

Description
A disk is the union of a circle and its interior (Simmons, 2007). A circle is given by the set of points in a plane that are equidistant from a given point.

Relations
- Disk is a subclass of surface.
- A disk has exactly one length of type diameter or radius.

Edge length

Description
The length of a (straight) edge of a surface or solid.

Relations
- Edge length is a subclass of scalar quantity.
- Edge length has the dimension of length.

Height

Description
The shortest distance between the base of a geometric figure and its top, whether that top is an opposite vertex, an apex, or another base (Simmons, 2007).

Relations
- Height is a subclass of scalar quantity.
- A height has the dimension of length.

Lateral surface area

Description
The surface area of a single lateral surface of a solid (i.e., any side area that is not a base area).

Relations
- Lateral surface area is a subclass of side area.

Radius

Description
The length of the line segment between the center and a point on a circle or sphere.

Relations
- Radius is a subclass of scalar quantity.
- A radius has the dimension of length.

Rectangle

Description
A rectangle is a box shape on a plane. Formally, a rectangle is a quadrilateral with four congruent angles (all 90°) (Simmons, 2007).

Relations
- Rectangle is a subclass of surface.
- A rectangle has exactly two lengths of type edge length.

Right circular cone

Description
A right cone with a base that is a circle.

Relations
- Right circular cone is a subclass of right cone.
- A right circular cone has exactly two areas.
- A right circular cone has exactly one length of type height.

Right circular cylinder

Description
A right cylinder with bases that are circles (Simmons, 2007).

Relations
- Right circular cylinder is a subclass of right cylinder.
- A right circular cylinder has exactly three areas.
- A right circular cylinder has exactly two lengths.
- A right circular cylinder some length of type radius or diameter.
- A right circular cylinder can only have lengths of type height or radius or diameter.

Right cone

Description
A cone that has its apex aligned directly above the center of its base (Simmons, 2007).

Relations
- Right cone is a subclass of cone.
Description

A cylinder which has bases aligned one directly above the other (Simmons, 2007).

Relations
- Right cylinder is a subclass of cylinder.

Side area

Description
The area of one particular exterior surface of a solid. This concept should be applied only if the solid has several distinguishable exterior surfaces. Otherwise (e.g., for a sphere) use total surface area. A side area can either be a scalar quantity or a vector quantity. In case of the latter, the vector is perpendicular to the surface (i.e., it has the same orientation as the surface normal), and its Euclidean norm equals the area of the surface.

Relations
- Side area is a subclass of surface area.
- A side area can only be a property of a solid.

Sphere

Description
A solid consisting of all points equidistant from a given point. This point is the center of the sphere (Weisstein, 2007).

Relations
- Sphere is a subclass of solid.
- A sphere has exactly one length of type radius or diameter.
- A sphere has exactly one area of type total surface area.

Solid

Description
A solid (a.k.a. geometric solid or solid geometric figure) is a collective term for all bounded threedimensional geometric figures. This includes polyhedra, pyramids, prisms, cylinders, cones, spheres, ellipsoids, etc. (Simmons, 2007).

Relations
- Solid is a subclass of system.
- A solid has some surface area.
- A solid has exactly one volume.

Surface

Description
A surface is a two-dimensional submanifold of three-dimensional Euclidean space.

Relations
- Surface is a subclass of system.
- A surface has exactly one surface area.

Surface area

Description
The area of a surface or of (one of) the exterior surface(s) of a solid. More precisely, the class alternatively denotes
- the area of a surface, or
- the area of a single exterior surface of a solid, or
- the total area of the exterior surface(s) of a solid.

Definition
A surface area is either a side area or a total surface area.

Relations
- Surface area is a subclass of physical quantity.
- A surface area has the dimension of area.

Total surface area

Description
The total area of a surface or of (all) the exterior surface(s) of a solid.

Relations
- Total surface area is a subclass of surface area.
- Total surface area is a subclass of scalar quantity.

Volume

Description
The total amount of space enclosed in a solid (Simmons, 2007).

Relations
- Volume is a subclass of scalar quantity.
- A volume has the dimension of volume.

Relations

has_area

Description
workaround for Qualified Cardinality Restriction (QCR) which is a feature of modeling currently not available from OWL.

Characteristics
- Specialization of has_property
- Domain: surface or solid
- Range: surface area

has_length

Description
workaround for Qualified Cardinality Restriction (QCR) which is a feature of modeling currently not available from OWL.

Characteristics
- Specialization of has_property
- Domain: *surface* or *solid*
- Range: *radius* or *diameter* or *edge length* or *height*

has_volume

Description
workaround for for Qualified Cardinality Restriction (QCR) which is a feature of modeling currently not available from OWL.

Characteristics
- Specialization of has_property
- Domain: *surface* or *solid*
- Range: *volume*

hasShapeRepresentation

Description
The relation hasShapeRepresentation points from a *system* to the *solid* that represents its geometry.

Characteristics
- Specialization of hasAspectSystem
- Domain: *system*
- Range: *solid*
- Inverse: representsShapeOf

hasSurfaceGeometry

Description
The relation hasSurfaceGeometry points from a *system* to the *surface* that represents its geometry.

Characteristics
- Specialization of hasAspectSystem
- Domain: *system*
- Range: *surface*
- Inverse: representsSurfaceGeometryOf

representsShapeOf

Description
The relation representsShapeOf points from a *solid* to the *system* whose geometry the *solid* represents.

Characteristics
- Specialization of representsAspectOf
- Domain: *solid*
representsSurfaceGeometryOf

Description
The relation representsSurfaceGeometryOf points from a surface to the system whose geometry the surface represents.

Characteristics
- Specialization of representsAspectOf
- Domain: surface
- Range: system
- Inverse: hasSurfaceGeometry
References

References

Appendix A Documentation Format

Classes
Classes are characterized by the following categories:

Description: A lexical description of the class, for example “A chemical reactor is an apparatus for holding substances that are undergoing a chemical reaction.” The description explains the meaning of the class to the user.

Definition: Unlike a description, a definition can be transcribed into a formal ontology language, where it establishes the set of necessary and sufficient conditions from which the membership of an ontological concept (class or individual) to the class can be inferred. Classes for which such a definition can not be indicated are called primitive classes.

Relations: The following characteristics are indicated, if existent:

- Specialization. A list of parent classes from which the current class is derived via specialization.
- Disjointness. A list of classes which are disjoint with the present class. Disjointness between classes means that an instance of the first class cannot simultaneously be an instance of the second class.
- Restrictions. Restrictions of binary relations (or attributes) specify the existence of a relation (or attribute) as well as its cardinality and value range with respect to the current class.

Usage: Some recommendations for the use of the class may be given if such advice is required.

Relations
Binary relations are characterized by the following categories:

Description: Similar to that of classes mentioned above.

Characteristics: The following characteristics are listed, if existent:

- Specialization. A listing of the relations from which the relation is derived via specialization.
- Domain. The domain of the relation.
- Range. The value range of the relation.
- Inverse. The inverse of a relation.
- Further characteristics, such as if the relation is transitive, symmetric, or (inverse) functional.

Usage: As above.

Attributes
Attributes are characterized by the following categories:

Description: As above.

Characteristics: The following characteristics are listed, if existent:

- Specialization. A listing of the attributes from which the attribute is derived via specialization.
- Domain. The domain of the attribute.
- Range or datatype. The value range of the attribute, which is usually indicated by referring to a built-in XML Schema Datatype (Biron et al., 2004).
- Further characteristics, such as if the attribute is functional.

Usage: As above.

Individuals

Predefined individuals are characterized by the following categories:

Description: As above.

Characteristics: The following characteristics are indicated, if existent:

- **Instance of.** The classes from which the individual is instantiated.
- **Different from.** A list of individual which are explicitly declared to be different from the present individual.
- **Relations.** Instances of binary relations the individual is involved in.
- **Attributes.** Attribute values of the individual.

Usage: As above.

Notation Conventions

Classes and relations of the Meta Model are named according to the CamelCase\(^5\) naming convention: UpperCamelCase notation is used to denote identifiers of classes, while relation identifiers are represented in lowerCamelCase notation. No particular naming convention is followed for identifiers of individuals (i.e., instances of classes).

In this document, class identifiers are highlighted by *italicized sans-serif font*; for better readability, the UpperCamelCase notation is not applied in the text, but the individual words that constitute the class identifiers are written separately and in lowercase (e.g., *class identifier*). If relations are explicitly referred to in the text, they are written in lowerCamelCase notation and are additionally highlighted by *sans-serif font*. Individuals are accentuated by *bold sans-serif font*. Partial models are denoted *bold serif font*, *italicized serif font* refers to ontology modules.

In figures, a graphical notation in the style of UML class diagrams is used; the basic elements are depicted in Fig. 33. Grey shaded boxes represent *classes*, white boxes represent *individuals*. *Attributes* are denoted by grey shaded boxes with dashed boundary lines, *attribute values* by white boxes with dashed boundary lines. *Specialization* is depicted through a solid line with a solid arrowhead that points from the subclass to the superclass. A dashed line with an open arrowhead denotes *instantiation*. *Binary relations* are depicted though solid lines. Three basic relation types are distinguished: a line with one open arrowhead represents a *unidirectional* relation; a line with two open arrowheads represents a *symmetric* relation; a line without any arrowheads represents a *bidirectional relation*\(^6\). Finally, graphic elements for two special types of relation are introduced: an *aggregation* relation is depicted through a line with a white diamond-shaped arrowhead pointing towards the aggregate class. Similarly, a black diamond-shaped arrowhead indicates a *composition* relation.

\(^5\) CamelCase is the practice of writing compound words joined without spaces; each word is capitalized within the compound. While the UpperCamelCase notation also capitalizes the initial letter of the compound, the lowerCamelCase notation leaves the first letter in lowercase.

\(^6\) In OWL, a bidirectional relation is modeled through a unidirectional relation and its inverse.
Fig. 33: Basic elements of graphical notation
<table>
<thead>
<tr>
<th>Concept</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>36</td>
</tr>
<tr>
<td>Acceleration</td>
<td>24, 26</td>
</tr>
<tr>
<td>amount_of_money</td>
<td>21</td>
</tr>
<tr>
<td>amount_of_substance</td>
<td>21</td>
</tr>
<tr>
<td>Angular coordinate</td>
<td>47</td>
</tr>
<tr>
<td>atto</td>
<td>36</td>
</tr>
<tr>
<td>Base area</td>
<td>59</td>
</tr>
<tr>
<td>Base dimension</td>
<td>20</td>
</tr>
<tr>
<td>Binary operator</td>
<td>8</td>
</tr>
<tr>
<td>Cartesian coordinate system</td>
<td>47</td>
</tr>
<tr>
<td>2D Cartesian coordinate system</td>
<td>46</td>
</tr>
<tr>
<td>3D Cartesian coordinate system</td>
<td>47</td>
</tr>
<tr>
<td>Cartesian coordinate system axis</td>
<td>48</td>
</tr>
<tr>
<td>cd.</td>
<td>36</td>
</tr>
<tr>
<td>centi</td>
<td>37</td>
</tr>
<tr>
<td>Cone</td>
<td>59</td>
</tr>
<tr>
<td>Coordinated Universal Time</td>
<td>45</td>
</tr>
<tr>
<td>CoordinatedUniversalTime</td>
<td>52</td>
</tr>
<tr>
<td>cos</td>
<td>14</td>
</tr>
<tr>
<td>Cuboid</td>
<td>59</td>
</tr>
<tr>
<td>Curvilinear coordinate system</td>
<td>48</td>
</tr>
<tr>
<td>Curvilinear coordinate system axis</td>
<td>48</td>
</tr>
<tr>
<td>Cylinder</td>
<td>59</td>
</tr>
<tr>
<td>Cylindrical coordinate system</td>
<td>48</td>
</tr>
<tr>
<td>deca</td>
<td>37</td>
</tr>
<tr>
<td>deci</td>
<td>37</td>
</tr>
<tr>
<td>Derived dimension</td>
<td>20, 23</td>
</tr>
<tr>
<td>Diameter</td>
<td>60</td>
</tr>
<tr>
<td>Disk</td>
<td>60</td>
</tr>
<tr>
<td>divide</td>
<td>14</td>
</tr>
<tr>
<td>Edge length</td>
<td>60</td>
</tr>
<tr>
<td>electric_current</td>
<td>21</td>
</tr>
<tr>
<td>Electricity and magnetism</td>
<td>23</td>
</tr>
<tr>
<td>eq.</td>
<td>14</td>
</tr>
<tr>
<td>exp</td>
<td>15</td>
</tr>
<tr>
<td>factorial</td>
<td>15</td>
</tr>
<tr>
<td>femto</td>
<td>37</td>
</tr>
<tr>
<td>Functional operator</td>
<td>8</td>
</tr>
<tr>
<td>Geometric figure</td>
<td>55</td>
</tr>
<tr>
<td>Geometry</td>
<td>55</td>
</tr>
<tr>
<td>geq</td>
<td>15</td>
</tr>
<tr>
<td>giga</td>
<td>38</td>
</tr>
<tr>
<td>gt.</td>
<td>15</td>
</tr>
<tr>
<td>has_area</td>
<td>63</td>
</tr>
<tr>
<td>has_length</td>
<td>63</td>
</tr>
<tr>
<td>has_volume</td>
<td>64</td>
</tr>
<tr>
<td>hasAncestor</td>
<td>11</td>
</tr>
<tr>
<td>hasChild</td>
<td>12</td>
</tr>
<tr>
<td>hasDescendemt</td>
<td>12</td>
</tr>
<tr>
<td>hasLeftChild</td>
<td>12</td>
</tr>
<tr>
<td>hasNodeValue</td>
<td>12</td>
</tr>
<tr>
<td>hasParent</td>
<td>13</td>
</tr>
<tr>
<td>hasRightChild</td>
<td>13</td>
</tr>
<tr>
<td>hasShapeRepresentation</td>
<td>64</td>
</tr>
<tr>
<td>hasStartingTime</td>
<td>52</td>
</tr>
<tr>
<td>hasSurfaceGeometry</td>
<td>64</td>
</tr>
<tr>
<td>hecto</td>
<td>38</td>
</tr>
<tr>
<td>Height</td>
<td>60</td>
</tr>
<tr>
<td>identity_dimension</td>
<td>21</td>
</tr>
<tr>
<td>Internal node</td>
<td>9</td>
</tr>
<tr>
<td>isDefinedBy (physical_dimension)</td>
<td>21</td>
</tr>
<tr>
<td>isDefinedBy (SI_unit)</td>
<td>36</td>
</tr>
<tr>
<td>isLeftChildOf</td>
<td>13</td>
</tr>
<tr>
<td>isRightChildOf</td>
<td>13</td>
</tr>
<tr>
<td>K</td>
<td>38</td>
</tr>
<tr>
<td>kg.</td>
<td>38</td>
</tr>
<tr>
<td>kilo</td>
<td>38</td>
</tr>
<tr>
<td>Lateral surface area</td>
<td>60</td>
</tr>
<tr>
<td>Leaf</td>
<td>9</td>
</tr>
<tr>
<td>leftChildNodeValue</td>
<td>14</td>
</tr>
<tr>
<td>length</td>
<td>22</td>
</tr>
<tr>
<td>Term</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------</td>
</tr>
<tr>
<td>TIME</td>
<td>41</td>
</tr>
<tr>
<td>Time period</td>
<td>52</td>
</tr>
<tr>
<td>Total surface area</td>
<td>63</td>
</tr>
<tr>
<td>Unary operator</td>
<td>11</td>
</tr>
<tr>
<td>UTC-System</td>
<td>53</td>
</tr>
<tr>
<td>Volume</td>
<td>63</td>
</tr>
<tr>
<td>x-axis</td>
<td>53</td>
</tr>
<tr>
<td>y-axis</td>
<td>53</td>
</tr>
<tr>
<td>yocto</td>
<td>41</td>
</tr>
<tr>
<td>yotta</td>
<td>41</td>
</tr>
<tr>
<td>z-axis</td>
<td>54</td>
</tr>
<tr>
<td>zepto</td>
<td>41</td>
</tr>
<tr>
<td>zetta</td>
<td>41</td>
</tr>
<tr>
<td>ZETTA-</td>
<td>42</td>
</tr>
</tbody>
</table>